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Introduction
Phenols, including bisphenol A (BPA) and 
benzophenone-3, and parabens, which also 
contain a phenolic ring, are found in a number 
of common consumer products [Centers for 
Disease Control and Prevention (CDC) 2009, 
2010]. The ubiquity of human exposure to 
phenolic compounds has sparked questions 
regarding toxicity, especially from expo-
sures during sensitive periods, for example, 
in utero (Bushnik et al. 2010; Calafat et al. 
2008, 2010; Mahalingaiah et al. 2008; 
Vandenberg et al. 2010; Wolff et al. 2008; 
Woodruff et al. 2011). Prenatal exposures to 
phenols have been associated with decreased 
gestational age at birth (BPA and benzo-
phenone-3) (Tang et al. 2013), decreased birth 
weight (2,4-dichlorophenol and 2,5-dichloro-
phenol) (Philippat et al. 2013; Wolff et al. 
2008), and child behavior problems, with 
some evidence of sex differences (BPA) (Braun 
et al. 2009, 2011b; Harley et al. 2013; Perera 

et al. 2012). Concentrations of phenol and 
paraben biomarkers in spot urine samples, 
which provide exposure measurements at one 
point in time, are frequently used to estimate 
recent exposures. However, many phenolic 
compounds are rapidly excreted (Völkel 
et al. 2002), and the degree to which a single 
measure can be used to represent longer-term 
or cumulative exposure depends partly on 
population-specific factors such as geographic 
location, demographic characteristics, and life-
style (Koch et al. 2014; Meeker et al. 2013; Ye 
et al. 2009).

Phenolic compounds in humans can 
be metabolized via conjugation [Matthews 
et al. 2001; U.S. Environmental Protection 
Agency (EPA) 2002]; these conjugated 
species are readily excreted via urine (Völkel 
et al. 2002). Generally, conjugated phenolic 
compounds comprise the bulk (≥ 90%) of 
the total biomarker concentration in urine 
(Koch et al. 2012; Liao and Kannan 2012; 

U.S. EPA 2002; Völkel et al. 2002; Ye et al. 
2005b). The remainder of the total urinary 
phenolic biomarker concentration consists of 
unconjugated (free) species that can arise from 
several sources: a) free phenolic compounds 
that passed through the body without conju-
gation, representing a biologically active form 
(Koch et al. 2012; U.S. EPA 2002; Völkel 
et al. 2002); b) free phenolic compounds that 
entered the sample via contamination during 
collection or processing (Koch et al. 2012; 
U.S. EPA 2002; Völkel et al. 2002); c) conju-
gated phenolic compounds hydrolyzed 
to the free form by enzymes in local tissues 
(Waechter et al. 2007); or d) conjugated 
phenolic compounds hydrolyzed to the free 
form following improper storage or handling 
(Ye et al. 2007).
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Background: Exposures to environmental phenols and parabens may be harmful, especially 
in utero. Prior studies have demonstrated high within-person variability of urinary concentrations 
across pregnancy.

oBjectives: We sought to measure phenol and paraben biomarker concentrations for the 
Norwegian Mother and Child Cohort (MoBa) study, assess within-person variability, and investi-
gate any possible external phenol or paraben contamination of specimens.

Methods: We collected three spot urine samples at approximately 17, 23, and 29 weeks gestation 
in a hospital setting and added a preservative containing ethyl paraben. We measured urinary 
concentrations and within-person variability for phenols and parabens in a MoBa sample (n = 45), 
including a subgroup of 15 participants previously randomly selected for a bisphenol A (BPA) 
exposure study who had unusually high total BPA concentrations. Additionally, we compared 
reliability results for total, conjugated, and free concentrations of phenolic compounds.

results: We detected total and free BPA, butyl paraben, propyl paraben, and methyl paraben in 
100% of samples, total benzophenone-3 in 95% of samples, and infrequently detected free benzo-
phenone-3 and total and free 2,4-dichlorophenol and 2,5-dichlorophenol. Intraclass correlation 
coefficients (ICCs) for total, conjugated, and free concentrations ranged from relatively low for BPA 
to moderate for propyl paraben. ICCs were generally similar overall and by subgroup.

conclusions: Using conjugated concentrations improved reliability estimates only for BPA. 
Measuring total and free concentrations, an approach that may be useful for future studies, allowed 
us to identify likely BPA and butyl paraben contamination of archived MoBa urine specimens.
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In field studies, exposure assessment is 
complicated by the ubiquitous presence of 
phenolic compounds in the environment. 
This has implications for population exposure 
levels as well as protocols for sample collec-
tion, processing, and analysis, which must 
be designed to minimize the potential for 
external sample contamination (Calafat 
and Needham 2009). For example, the use 
of BPA in laboratory supplies necessitates 
fastidious handling to ensure sample integrity 
(Ye et al. 2013). Both collection conditions 
and preservatives to prevent bacterial growth 
in urine can contribute to contamination of 
urine samples with BPA (Longnecker et al. 
2013). Similarly, personal care products used 
by laboratory technicians that contain benzo-
phenone-3 and parabens have contaminated 
biological samples (Ye et al. 2013).

Accurate exposure assessment is critical to 
establishing reliable estimates of associations 
between background phenolic exposures and 
health outcomes. Exposures to select phenols 
(Meeker et al. 2013; Woodruff et al. 2011; Ye 
et al. 2009), and the reliability of a single spot 
urine sample to estimate exposure to phenolic 
compounds over the course of pregnancy can 
vary substantially across populations (Braun 
et al. 2011a, 2012; Jusko et al. 2014; Meeker 
et al. 2013; Philippat et al. 2013; Quirós-
Alcalá et al. 2013). These findings suggest 
that reliability estimates for these compounds 
may not be generalizable across populations, 
particularly when patterns of product usage or 
population exposures may be different.

The purpose of our study was 3-fold. 
First, we wanted to measure the concentra-
tions of phenols and parabens in archived 
urine collected from women in the Norwegian 
Mother and Child Cohort Study (MoBa). 
Second, we sought to characterize the reli-
ability of a single spot urine sample to estimate 
environmental exposure to these compounds 
over the course of pregnancy in the MoBa 
cohort. Third, given the recently reported 
potential for contamination of MoBa speci-
mens (Longnecker et al. 2013), we investigated 
whether using the free and conjugated concen-
trations of phenolic biomarkers might improve 
reliability estimates.

Methods
Study design .  MoBa is a prospective 
population-based pregnancy cohort conducted 
by the Norwegian Institute of Public Health 
(Magnus et al. 2006). MoBa was initi-
ated for the study of exposures and diseases 
related to pregnancy and child development, 
including potential health effects associated 
with exposures to environmental chemicals 
(Magnus et al. 2006). From 1999 through 
2008, pregnant women across Norway were 
recruited at their first ultrasound visit (approxi-
mately 17–18 weeks gestation), and 38.5% 

of invited women consented to participate. 
The final cohort includes 90,700 mothers and 
108,000 pregnancies (Norwegian Institute of 
Public Health 2013).

Beginning in 2002, as part of the standard 
data collection protocol, MoBa participants 
provided a spot urine specimen in a collection 
cup at the ultrasound visit. Because of evidence 
of bacterial growth upon receipt at the central 
processing facility, MoBa revised the protocol 
to include the addition of a preservative to 
urine specimens. Laboratory staff transferred 
8 mL of urine from each specimen to a 
Vacutainer tube (Urinalysis Preservative Plus 
Urine Tube; BD Diagnostics) with a mixture 
of three preservatives (sodium propionate 
94%, ethyl paraben 5.6%, and chlorhexidine 
0.4%) and shipped the specimen, unrefriger-
ated, to a central processing facility (Hoppin 
et al. 2006; Rønningen et al. 2006). At the 
processing facility, urine samples were parti-
tioned into 930-μL aliquots and stored at 
–80°C until use (Rønningen et al. 2006).

From November 2007 through December 
2008, a subset of MoBa participants (n = 671) 
donated a spot urine sample at approximately 
17 weeks of gestation plus additional urine 
specimens at approximately 23 and 29 weeks 
of gestation for a reliability substudy. These 
participants were recruited from hospitals 
representing four regions of Norway [north-
west (Sunnmøre Hospital HF Ålesund), 
southwest (Stavanger University Hospital 
HF), central (St Olavs Hospital HF), and 
east (Østfold Hospital HF Fredrikstad)] and 
specimens were collected using the protocol 
described above.

From the subset of 671, we randomly 
selected 30 participants for this reliability 
substudy. Another 15 participants from 
the same subset of 671 that were part of a 
previous random selection for an unpub-
lished pilot study were also included. The 
pilot study showed that these 15 women had 
the highest measured total BPA concentra-
tions (range, 22.9–52.1 μg/g creatinine); we 
included them to determine whether the high 
concentrations could possibly be attributed to 
contamination. The final study sample thus 
included 135 urine samples from 45 women.

For quality control (QC), in 2011 we 
collected spot urine specimens from 10 
Norwegian women using the same collection 
protocol and materials used for MoBa partici-
pants, except that the specimens did not 
require shipping because they were collected 
from processing facility staff. QC samples 
were pooled before transfer to the tube with 
preservative and aliquotted before analysis.

Informed consent was obtained from 
each MoBa participant on recruitment. The 
MoBa study was approved by The Regional 
Committee for Medical Research Ethics in 
South-Eastern Norway (#2011/1386). The 

reliability substudy was also approved by The 
Regional Committee for Medical Research 
Ethics in South-Eastern Norway and the 
University of North Carolina Institutional 
Review Board. The involvement of the CDC 
laboratory did not constitute engagement in 
human subjects research.

Measurement of phenol and paraben 
concentrations. In 2012, we analyzed urine 
specimens for free and total (conjugated plus 
free) concentrations of nine compounds: BPA, 
butyl paraben, ethyl paraben, methyl paraben, 
propyl paraben, benzo phenone-3, triclosan, 
2,4-dichlorophenol, and 2,5-dichloro-
phenol. Triclosan results are presented else-
where (Bertelsen et al. 2014). Analyses were 
conducted using online solid phase extraction–
isotope dilution–high performance liquid 
chromatography–tandem mass spectrometry 
(online SPE-HPLC-isotope dilution-MS/MS) 
(Ye et al. 2005a, 2008) at the CDC (Atlanta, 
GA, USA) in three analytical batches. All urine 
specimens from a participant were analyzed 
in the same analytical batch in random order. 
The pooled urine for QC was distributed into 
15 aliquots, and we included 5 aliquots in 
each of the three analytical batches. Phenol 
and paraben concentrations are reported in 
micrograms per liter and micrograms per gram 
of creatinine to account for urine dilution.

Statistical analyses. All statistical analyses 
were conducted separately for the complete 
sample (n = 45 participants, 135 samples; here-
after “complete sample”) as well as for the two 
subgroups: randomly selected participants with 
no previously measured BPA concentrations 
(n = 30 participants, 90 samples; hereafter 
“random sample”) and participants with high 
total BPA concentrations in a previous random 
selection (n = 15 participants, 45 samples; 
hereafter “high-BPA subgroup”).

We summarized characteristics of the 
study population using data from version 7 
of the quality-assured MoBa data files released 
for research in June 2012. We also computed 
coefficients of variation (CVs) for all QC 
specimens and between the three QC batches. 
Between-batch CVs based on the QC samples 
were generally low (< 15%) except when mean 
concentrations were near the limit of detection 
(LOD) (see Supplemental Material, Table S1).

For the study sample, we calculated conju-
gated concentrations as the difference between 
total and free concentrations, when both 
total and free concentrations were detectable. 
Negative conjugated values occurred when free 
concentrations exceeded total concentrations 
at levels close to the LOD, which are subject 
to higher measurement error. We computed 
geometric means for total, free, and conjugated 
concentrations with all time periods combined 
as well as for each of the three time points. We 
used the instrumental values for total phenol 
and paraben concentrations below the LOD; 
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for free phenol and paraben concentrations, 
instrumental values below the LOD were not 
provided (i.e., missing) because the majority of 
free concentrations were so low that the instru-
ment software recorded them as “no peak” or 
“< 0.” We analyzed data only for compounds 
with > 50% detection frequency; analytes 
fulfilling this criterion all had 95–100% detec-
tion frequency, so we did not employ any addi-
tional correction (e.g., imputation) for these 
values. To examine potential contamination of 
specimens, we also compared the distributions 
of free phenol and paraben concentrations as 
a percentage of the total concentration for the 
five compounds with sufficient detection: BPA, 
butyl paraben, methyl paraben, propyl paraben, 
and benzophenone-3.

We assessed the proportion of variance 
attributed to between-person variability across 
the three time points in pregnancy using intra-
class correlation coefficients (ICCs). ICCs typi-
cally range from 0 to 1 with a value close to 1 
indicating high temporal reliability of measure-
ments, with most of the variance attributable 
to differences between subjects rather than 
within-person differences between time points. 
We calculated ICCs for total, free, and conju-
gated concentrations in micrograms per liter 
and micrograms per gram creatinine. ICCs and 
95% confidence intervals (CIs) were computed 
with natural logarithm–transformed data 
using sums of squares from generalized linear 
models generated by the intracc macro for SAS 
(Hamer 1995). For comparison, ICCs were 
also computed using random effects models to 
estimate within- and between-person variance, 
assuming an unstructured covariance matrix to 
allow each covariance to be uniquely estimated 
and provide maximum model flexibility. The 
ICCs computed with random-effects models 
produced results similar to those shown and 
thus are not presented.

All statistical analyses were conducted 
using SAS software version 9.3 (SAS Institute 
Inc., Cary, NC, USA).

Results
Most MoBa participants were married or 
cohabitating, had at least some college educa-
tion, and had a moderate income (Table 1). 
Although nearly half were ever-smokers, most 
did not smoke during the current pregnancy. 
The median age of participants at delivery was 
30 years with a range of 20–41 years (random 
sample: median = 31, range 20–41 years; 
high-BPA subgroup: median = 29, range 
21–37 years). The majority of specimens 
(79.2%) spent 1 day in transit with the 
remainder spending 2–5 days.

Percent detection was comparable among 
subgroups but varied by analyte, with most 
compounds detected in the majority of 
samples (Tables 2 and 3). We detected free 
and total concentrations in 100% of samples 

for four analytes (BPA, butyl paraben, methyl 
paraben, propyl paraben). We detected total 
benzophenone-3 in the majority (> 92%) 
of samples and free benzophenone-3 in 
approximately 10%. Total concentrations of 
2,4-dichlorophenol and 2,5-dichlorophenol 
were detected in < 50% of samples, with 
negligible detection of free concentrations for 
these analytes. Ethyl paraben could not be 
reliably quantitated because it was a compo-
nent of the urine preservative added to prevent 
bacterial growth. Additionally, two samples 
that did not pass the laboratory QA (quality 
assurance)/QC criteria for free phenolic 
compounds concentrations were not reported.

The geometric mean concentration of 
analytes for the random sample and high-BPA 
subgroup were generally comparable when 
expressed on a micrograms per liter basis 
(Table 2). When expressed on a micrograms 
per gram creatinine basis, however, we observed 
a higher mean free BPA concentration at 
week 17 for the high-BPA subgroup (Table 3). 
In turn, we observed a difference in mean total 
BPA concentrations between subgroups, as 
confirmed with a t-test comparing log-normally 
distributed means (data not shown). We also 
observed a higher mean conjugated methyl 
paraben for the high-BPA subgroup, which led 
to a significant difference in mean total methyl 
paraben concentrations between subgroups 
(data not shown).

For all phenols and parabens, the 
percentage of free species in the total concen-
tration was similar for the random sample and 
high-BPA subgroup (Table 4). The majority 
of BPA and butyl paraben was in its free 

form. Free concentration comprised over 
20% of the total biomarker concentration in 
approximately 96% of the samples analyzed 
for BPA and approximately 65% of the 
samples analyzed for butyl paraben (Table 4). 
By contrast, free propyl paraben represented 
> 20% of the total concentration in approxi-
mately 11% of samples, and most of the 
detected methyl paraben and benzophenone-3 
was conjugated.

For the conjugated concentrations of BPA, 
butyl paraben, and propyl paraben (Table 5), 
the ICCs ranged from low for BPA (~ 0.25) 
to moderate for butyl paraben (~ 0.40) and 
propyl paraben (~ 0.60); this was the case 
regardless of subgroup or method of expressing 
concentration. For conjugated methyl paraben, 
the ICCs varied both by subgroup and method 
of expressing concentration, with values 
ranging from moderate to low—for example, 
0.34 in micrograms per gram creatinine for the 
random sample and 0.06 in micrograms per 
gram creatinine for the high-BPA subgroup.

For the free concentrations of BPA and 
butyl paraben, the ICCs were lower than 
for the conjugated concentrations, even 
approaching 0 for free BPA. This was true 
regardless of method of expressing concentra-
tion or subgroup. The ICC for free methyl 
paraben was approximately 0.35 across 
subgroups in micrograms per liter and 
approximately 0.2 in micrograms per gram 
creatinine. For creatinine-adjusted free propyl 
paraben, the ICC was higher in the random 
sample (0.71) than the high-BPA subgroup 
(0.47), whereas unadjusted values were more 
consistent across subgroups (~ 0.55).

Table 1. Characteristics of complete study sample and subgroups [n (%)].a

Characteristic
Complete 

sample (n = 45)
Random 

sample (n = 30)
High-BPA 

subgroup (n = 15) 
Civil status

Married 20 (44.4) 14 (46.7) 6 (40.0)
Cohabitating 21 (46.7) 13 (43.3) 8 (53.3)
Single 2 (4.4) 1 (3.3) 1 (3.3)
Missing 2 (4.4) 2 (6.7) 0 (0.0)

Completed maternal education
< College/university 12 (26.7) 9 (30.0) 3 (20.0)
College/university (up to and including 4 years) 24 (53.3) 16 (53.3) 8 (53.3)
> College/university 6 (13.3) 2 (6.7) 4 (26.7)
Missing 3 (6.7) 3 (10.0) 0 (0.0)

Gross income ($US)
< 34,800 8 (17.8) 5 (16.7) 3 (20.0)
34,800–69,600 27 (60.0) 18 (60.0) 9 (60.0)
> 69,600 7 (15.6) 4 (13.3) 3 (20.0)
Missing 3 (6.7) 3 (10.0) 0 (0.0)

Ever smoked
No 23 (51.1) 16 (53.3) 7 (46.7)
Yes 21 (46.7)  13 (43.3) 8 (53.3)
Missing 1 (2.2) 1 (3.3) 0 (0.0)

Smoked during this pregnancy
No 38 (84.4) 26 (86.7) 12 (80.0)
Sometimes or daily 4 (8.8) 2 (6.7) 2 (13.3)
Missing 3 (6.7) 2 (6.7) 1 (6.7)

aComplete sample (n = 45 participants, 135 samples); random sample: randomly selected participants with no previ-
ously measured BPA concentrations (n = 30 participants, 90 samples); high-BPA subgroup: participants with high BPA 
concentrations in a previous random selection (n = 15 participants, 45 samples).
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The ICC for the total concentrations of 
these phenols and parabens can be thought 
of as a weighted average of the values for 
the conjugated and free compounds. Thus, 
for BPA and butyl paraben, with a relatively 
greater proportion of free compound, the ICCs 
for total concentrations were generally low. For 
methyl paraben and propyl paraben, with rela-
tively little free compound, the ICCs for total 
concentrations largely reflected the ICCs of 
conjugated concentrations. For BP-3, where a 
lack of detectable free concentrations prevented 
the computation of conjugated concentrations, 
the ICC was 0.38 in the random sample and 
0.80 in the high-BPA subgroup.

ICCs computed with random effects 
models produced similar results (data not 
shown). The Spearman correlation coeffi-
cients among serial pairs of concentrations 
(conjugated, creatinine-adjusted) were gener-
ally comparable across pairing and subgroups, 
consistent with the results in Table 5 (see 
Supplemental Material, Table S2).

Discussion
The main purpose of our study was to 
examine the reliability of phenolic concentra-
tions in a single spot urine sample collected 
during pregnancy to estimate exposure over 

the course of pregnancy in the MoBa cohort. 
In general, ICCs were poor to moderate, 
with the highest ICCs found consistently for 
propyl paraben (~ 0.60). We expect ICCs 
for concentrations that have been adjusted 
for creatinine to more accurately describe 
exposure variability, rather than variability in 
urine dilution. Results were generally similar 
overall and by subgroup. The small sample 
size (n = 45) may also have contributed to 
imprecision in the estimates of average 
concentration and of the ICCs.

Contamination likely accounts for the 
greater geometric mean total BPA concen-
trations in this study sample compared with 
other studies. When free BPA is excluded 
from the total analyte concentration, 
the geometric mean for conjugated BPA 
(1.3 μg/L) is similar to other population 
estimates for total BPA (Braun et al. 2009; 
Bushnik et al. 2010; CDC 2013; Hoepner 
et al. 2013), including those for pregnant 
women (Quirós-Alcalá et al. 2013), although 
some previously reported total BPA means 
for pregnant women have been higher than 
these conjugated values (Meeker et al. 2013; 
Woodruff et al. 2011). Quantifying free 
BPA only provides an estimate of poten-
tial contamination. For butyl paraben, 88 

(65%) samples had free concentrations 
greater than 20% of total concentrations, also 
indicating likely contamination. There was 
some evidence of contamination with propyl 
paraben as well; for propyl paraben, 15 (11%) 
samples had free concentrations > 20% of 
total, but reliability estimates were consistent 
for total, conjugated, and free concentra-
tions. There was no evidence of contamina-
tion for methyl paraben, benzophenone-3, 
2,4-dichloro phenol, or 2,5-dichloro phenol, 
given either the limited proportion of free 
concentrations in the total concentration 
(methyl paraben, benzophenone-3) or the 
limited detection of any free concentra-
tions among those samples with detectable 
total concentrations (2,4-dichlorophenol, 
2,5-dichlorophenol).

In the case of MoBa, the likely sources 
of BPA contamination were the urinary 
preservative (sodium propionate 94%, ethyl 
paraben 5.6%, and chlorhexidine 0.4%) and 
the collection conditions, that is, the hospital 
setting, plastic materials, and handling 
procedures (Longnecker et al. 2013), despite 
employing procedures to limit possible 
contamination. Population sources of BPA 
exposure are diverse. BPA is employed in 
the manufacture of polycarbonate plastics 

Table 2. Limit of detection, percent detectable results, and geometric means for complete study sample and subgroups (μg/L).a

Analyte and speciesb

Complete sample (n = 45) Random sample (n = 30) High-BPA subgroup (n = 15)

n (%) > LOD
GM all time 

periods
GM 17, 23, 29 

weeks n (%) > LOD
GM all time 

periods
GM 17, 23, 29 

weeks n (%) > LOD
GM all time 

periods
GM 17, 23, 29 

weeks
Bisphenol A (LOD = 0.4 μg/L)

Total 135 (100) 7.7 8.9, 7.5, 6.7 90 (100) 7.5 7.8, 7.4, 7.2 45 (100) 8.1 11.6, 7.8, 5.9
Free 133 (100) 5.4 7.2, 5.2, 4.3 89 (100) 5.3 6.0, 5.6, 4.5 44 (100) 5.6 10.5, 4.6, 3.8
Conjugated 133 (100) 1.3 1.1, 1.3, 1.6 89 (100) 1.2 1.0, 1.1, 1.4 44 (100) 1.7 1.5, 1.8, 1.9

Butyl paraben (LOD = 0.2 μg/L)
Total 135 (100) 6.3 6.7, 6.1, 5.9 90 (100) 6.4 7.6, 6.0, 5.7 45 (100) 6.1 5.3, 6.4, 6.5
Free 133 (100) 1.8 1.8, 1.8, 1.8 89 (100) 1.8 1.8, 1.8, 1.9 44 (100) 1.8 1.8, 1.9, 1.8
Conjugated 133 (100) 3.1 3.6, 3.1, 2.8 89 (100) 3.5 4.8, 3.8, 2.5 44 (100) 2.5 2.0, 2.2, 3.3

Methyl paraben (LOD = 1.0 μg/L)
Total 135 (100) 1235.7 1,332, 1,249, 1,134 90 (100) 1213.7 1,297, 1,256, 1,097 45 (100) 1280.9 1,405, 1,234, 1,212
Free 133 (100) 25.7 24.1, 26.4, 26.7 89 (100) 25.7 24.7, 25.2, 27.3 44 (100) 25.7 22.9, 28.9, 25.5
Conjugated 133 (100) 1204.5 1,308, 1,212, 1,104 89 (100) 1181.0 1,271, 1,218, 1,066 44 (100) 1253.5 1,392, 1,202, 1,186

Propyl paraben (LOD = 0.2 μg/L)
Total 135 (100) 32.3 29.5, 37.8, 30.2 90 (100) 36.4 40.1, 38.3, 31.4 45 (100) 25.4 16.1, 36.9, 27.8
Free 133 (100) 1.6 1.4, 1.7, 1.6 89 (100) 1.7 1.6, 1.6, 1.7 44 (100) 1.4 1.1, 1.9, 1.3
Conjugated 133 (100) 28.9 25.5, 35.1, 27.3 89 (100) 33.1 35.7, 36.2, 28.2 44 (100) 22.1 12.3, 33.0, 25.6

Benzophenone-3 (LOD = 0.4 μg/L)
Total 128 (95) 6.1 4.4, 7.0, 7.3  86 (96) 6.7 5.3, 6.5, 8.7  42 (93) 5.0 3.0, 7.9, 5.2
Free 13 (10) NC NC 9 (10) NC NC 4 (9) NC NC
Conjugated 13 (10) NC NC 9 (10) NC NC 4 (9) NC NC

2,4-DCP (LOD = 0.2 μg/L)
Total 60 (44) NC NC  42 (47) NC NC  18 (40) NC NC
Free 2 (2) NC NC 1 (1) NC NC 1 (2) NC NC
Conjugated 2 (2) NC NC 1 (1) NC NC 1 (2) NC NC

2,5-DCP (LOD = 0.2 μg/L)
Total 19 (14) NC NC  11 (12) NC NC 8 (18) NC NC
Free 0 (0) NC NC 0 (0) NC NC 0 (0) NC NC
Conjugated 0 (0) NC NC 0 (0) NC NC 0 (0) NC NC

Abbreviations: 2,4-DCP, 2,4-dichlorophenol; 2,5-DCP, 2,5-dichlorophenol; GM, geometric mean; LOD, limit of detection; NC, not calculated due to < 50% detection.
aComplete sample (n = 45 participants, 135 samples); random sample: randomly selected participants with no previously measured BPA concentrations (n = 30 participants, 
90 samples); high-BPA subgroup: participants with high BPA concentrations in a previous random selection (n = 15 participants, 45 samples). bInstrumental readings used for total 
concentrations; values > LOD used for free concentrations. Conjugated concentrations, which are the difference between measured total and free concentrations, were calculated if 
both total and free were > LOD. Two specimens lacked reportable free phenol concentrations due to instrument error.
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(e.g., compact discs, plastic dinnerware, 
toys), epoxy resins (e.g., can linings, dental 
composites), and thermal paper (e.g., some 
receipts) (CDC 2009). Our results suggest 
that the magnitude of contamination varied, 
perhaps due to collection conditions or 
changes in preservative composition, and thus 
measurement of free concentrations would be 
required to isolate the possible contaminant 
from the conjugated fraction. Many investiga-
tors take steps to reduce contamination from 
known sources; however, contamination may 
also arise in unexpected ways. It is difficult to 

compare possible sources of contamination 
resulting from sample collection procedures 
between studies due to limited detail provided 
in the peer-reviewed literature. Although 
most investigators choose to measure only 
total phenol and paraben concentrations 
(conjugated and free combined), measuring 
both species in at least a subgroup of study 
samples allows for the identification of 
samples in which the free:total proportion is 
out of the expected range (Koch et al. 2012; 
Völkel et al. 2002; Waechter et al. 2007), 
which may indicate contamination.

We also investigated whether isolating the 
conjugated concentrations would produce 
improved ICCs compared with those for total 
concentrations. Separating the conjugated 
from the free phenol did not substantially 
alter reliability estimates for most analytes. 
For both BPA and butyl paraben; however, 
the majority of samples had a substantial 
proportion of these compounds present as 
free species and the conjugated analyte 
concentrations appeared more reliable, 
whereas ICCs for free concentrations were 
especially low. This supports four conclusions: 

Table 3. Limit of detection, percent detectable results, and geometric means for complete study sample and subgroups (μg/g creatinine).a

Analyte and speciesb

Complete sample (n = 45) Random sample (n = 30) High-BPA subgroup (n = 15)

n (%) > LOD
GM all time 

periods
GM 17, 23, 29 

weeks n (%) > LOD
GM all time 

periods
GM 17, 23, 29 

weeks n (%) > LOD
GM all time 

periods
GM 17, 23, 29 

weeks
Bisphenol A (LOD = 0.4 μg/L)

Total 135 (100) 10.9 17.9, 9.3, 7.8 90 (100) 9.6 12.3, 9.2, 7.8 45 (100) 14.1 37.8, 9.4, 7.8
Free 133 (100) 7.7 14.3, 6.5, 5.0 89 (100) 6.9 9.5, 7.1, 4.9 44 (100) 9.6 34.1, 5.5, 5.2
Conjugated 133 (100) 1.8 2.1, 1.6, 1.8 89 (100) 1.4 1.5, 1.3, 1.5 44 (100) 2.8 4.5, 2.2, 2.5

Butyl paraben (LOD = 0.2 μg/L)
Total 135 (100) 8.9 13.5, 7.5, 6.9 90 (100) 8.2 12.0, 7.5, 6.1 45 (100) 10.5 17.3, 7.6, 8.9
Free 133 (100) 2.6 3.6, 2.3, 2.1 89 (100) 2.4 2.9, 2.3, 2.0 44 (100) 3.1 5.8, 2.2, 2.4
Conjugated 133 (100) 4.3 6.9, 3.6, 3.3 89 (100) 4.4 7.1, 4.3, 2.7 44 (100) 4.2 6.5, 2.7, 4.5

Methyl paraben (LOD = 1.0 μg/L)
Total 135 (100) 1758.9 2,676, 1,539, 1,322 90 (100) 1563.0 2,051, 1,572, 1,185 45 (100) 2227.5 4,559, 1,474, 1,645
Free 133 (100) 36.6 48.0, 33.0, 31.1 89 (100) 33.3 39.0, 32.2, 29.4 44 (100) 44.2 74.8, 34.5, 34.6
Conjugated 133 (100) 1713.4 2,604, 1,512, 1,286 89 (100) 1530.8 2,010, 1,553, 1,150 44 (100) 2152.1 4,536, 1,435, 1,609

Propyl paraben (LOD = 0.2 μg/L)
Total 135 (100) 46.0 59.3, 46.6, 35.1 90 (100) 46.8 63.3, 47.9, 33.9 45 (100) 46.2 52.1, 44.0, 37.8
Free 133 (100) 2.2 2.8, 2.1, 1.9 89 (100) 2.1 2.5, 2.1, 1.9 44 (100) 2.4 3.6, 2.2, 1.8
Conjugated 133 (100) 41.0 50.7, 43.1, 31.8 89 (100) 42.6 56.4, 45.2, 30.4 44 (100) 38.0 40.2, 39.5, 34.8

Benzophenone-3 (LOD = 0.4 μg/L)
Total 128 (95) 8.5 8.8, 8.3, 8.5  86 (96) 8.5 8.4, 7.7, 9.4  42 (93) 8.6 9.6, 9.5, 7.0
Free 13 (10) NC NC 9 (10) NC NC 4 (9) NC NC
Conjugated 13 (10) NC NC 9 (10) NC NC 4 (9) NC NC

2,4-DCP (LOD = 0.2 μg/L)
Total 60 (44) NC NC  42 (47) NC NC  18 (40) NC NC
Free 2 (2) NC NC 1 (1) NC NC 1 (2) NC NC
Conjugated 2 (2) NC NC 1 (1) NC NC 1 (2) NC NC

2,5-DCP (LOD = 0.2 μg/L)
Total 19 (14) NC NC  11 (12) NC NC 8 (18) NC NC
Free 0 (0) NC NC 0 (0) NC NC 0 (0) NC NC
Conjugated 0 (0) NC NC 0 (0) NC NC 0 (0) NC NC

Abbreviations: 2,4-DCP, 2,4-dichlorophenol; 2,5-DCP, 2,5-dichlorophenol; GM, geometric mean; LOD, limit of detection; NC, not calculated due to < 50% detection. 
aComplete sample (n = 45 participants, 135 samples); random sample: randomly selected participants with no previously measured BPA concentrations (n = 30 participants, 
90 samples); high-BPA subgroup: participants with high BPA concentrations in a previous random selection (n = 15 participants, 45 samples). bInstrumental readings used for total 
concentrations; values > LOD used for free concentrations. Conjugated concentrations, which are the difference between measured total and free concentrations, were calculated if 
both total and free were > LOD. Two specimens lacked reportable free phenol concentrations due to instrument error.

Table 4. Comparison of free concentrations as a percent of total concentration (μg/L) for select phenols and parabens within complete study sample and 
subgroups [n (%)].a

Percentage 
of free/
total

Bisphenol A Butyl paraben Methyl paraben Propyl paraben Benzophenone-3 

Complete 
sample 
(n = 45)

Random 
sample 
(n = 30)

High-BPA 
subgroup 
(n = 15)

Complete 
sample 
(n = 45)

Random 
sample 
(n = 30)

High-BPA 
subgroup 
(n = 15)

Complete 
sample 
(n = 45)

Random 
sample 
(n = 30)

High-BPA 
subgroup 
(n = 15)

Complete 
sample 
(n = 45)

Random 
sample 
(n = 30)

High-BPA 
subgroup 
(n = 15)

Complete 
sample 
(n = 45)

Random 
sample 
(n = 30)

High-BPA 
subgroup 
(n = 15)

Missing 2 (1.5) 1 (1.1) 1 (2.2) 2 (1.5) 1 (1.1) 1 (2.2) 2 (1.5) 1 (1.1) 1 (2.2) 2 (1.5) 1 (1.1) 1 (2.2) 2 (1.5) 1 (1.1) 1 (2.2)
Free < LOD 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 120 (88.9) 80 (88.9) 40 (88.9)
0–5% 0 (0.0) 0 (0.0) 0 (0.0) 6 (4.4) 5 (5.6) 1 (2.2) 130 (96.3) 87 (96.7) 43 (95.6) 71 (52.6) 51 (56.7) 20 (44.4) 9 (6.7) 6 (6.7) 3 (6.7)
> 5–10% 1 (0.7) 1 (1.1) 0 (0.0) 18 (13.3) 10 (11.1) 8 (17.8) 2 (1.5) 1 (1.1) 1 (2.2) 31 (23.0) 17 (18.9) 14 (31.1) 2 (1.5) 2 (2.2) 0 (0.0)
> 10–20% 2 (1.5) 1 (1.1) 1 (2.2) 21 (15.6) 16 (17.8) 5 (11.1) 1 (0.7) 1 (1.1) 0 (0.0) 16 (11.9) 12 (13.3) 4 (8.9) 1 (0.7) 1 (1.1) 0 (0.0)
> 20–50% 16 (11.9) 13 (14.4) 3 (6.7) 38 (28.2) 28 (31.1) 10 (22.2) 0 (0.0) 0 (0.0) 0 (0.0) 7 (5.2) 3 (3.3) 4 (8.9) 1 (0.7) 0 (0.0) 1 (2.2)
> 50% 114 (84.4) 74 (82.2) 40 (88.9) 50 (37.0) 30 (33.3) 20 (44.4) 0 (0.0) 0 (0.0) 0 (0.0) 8 (5.9) 6 (6.7) 2 (4.4) 0 (0.0) 0 (0.0) 0 (0.0)

LOD, limit of detection.
aComplete sample (n = 45 participants, 135 samples); random sample: randomly selected participants with no previously measured BPA concentrations (n = 30 participants, 90 
samples); high-BPA subgroup: participants with high BPA concentrations in a previous random selection (n = 15 participants, 45 samples). 
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a) Reliability estimates may be affected by 
external sources of contamination, as indi-
cated by higher concentrations than typically 
reported in other studies; b) in this popu-
lation, the extent of the specimen contami-
nation varied, possibly due to conditions at 
multiple collection locations or variation in 
collection tube manufacturing (Table 2); 
c) these data may also reflect daily variability 
in individual exposures that make charac-
terization of average longer-term exposure 
challenging; and d) the reliability of a single 
specimen’s concentration to categorize BPA 
exposure is rather poor, as has been reported 
in other studies (Braun et al. 2011a, 2012; 
Jusko et al. 2014; Meeker et al. 2013; 
Philippat et al. 2013). For other phenolic 
compounds, our results were comparable to 
previous estimates for methyl paraben, but 
lower than prior reports for benzophenone-3, 
butyl paraben, and 2,4-dichlorophenol, and 
higher than prior reports for propyl paraben 
(Meeker et al. 2013; Philippat et al. 2013; 
Smith et al. 2012).

Although the source of butyl paraben 
contamination in the MoBa samples could 
not be definitively established with the 
available information, it appears that the 
urinary preservative containing 5.6% ethyl 
paraben was the source of the detected ethyl 
paraben. The analytic consequences of this 
preservative are of primary importance to 
investigators analyzing affected specimens. 
Online SPE-HPLC-isotope dilution-MS/
MS includes three steps: an extraction step in 
which target analytes are preconcentrated and 
separated from unwanted matrix components, 
a separation step in which target compounds 
are separated from each other and residual 
matrix biomolecules, and a detection step in 

which compounds are quantified according 
to molecular mass. Generally, environmental 
chemicals, including phenols and parabens, 
are present in urine at trace concentra-
tions—at or below parts per billion. In the 
MoBA samples, ethyl paraben concentra-
tions were in the parts per thousand range. 
Therefore, the detector was oversaturated, 
and the analytic performance and sensitivity 
of the mass spectrometer for all phenols and 
parabens measured was negatively affected, 
as evidenced by the QC CVs being in some 
cases twice as large as annual CVs reported by 
the CDC for these analytes (CDC, National 
Center for Environmental Health 2011).

Given the extent of interference, exposure 
assessment for most urinary phenols and 
parabens may be difficult in the MoBa cohort 
using the currently available assays. It is 
unknown to what degree additional analytes 
might be impacted. We hypothesize that the 
extraction, separation, or quantification of 
compounds with physicochemical properties 
comparable to those of ethyl paraben may 
also be negatively impacted. Further detailed 
quality control studies would have to be 
conducted in order to test this hypothesis.

Conclusions
We demonstrated moderate reliability 
of a single spot urinary concentration to 
estimate exposure over an 18-week period 
for benzophenone-3 and propyl paraben, 
with lower reliability for the other measured 
analytes. Studies interested in measuring 
environmental chemicals should avoid, if 
at all possible, the use of preservatives that 
may interfere with analytic procedures, 
and should provide collection protocols 
to the analytic laboratory in advance so 

potential interferences can be anticipated. 
We document the utility of measuring the 
total and free phenol and paraben biomarker 
concentrations as a method for detecting 
the contamination of specimens from these 
ubiquitous compounds.
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